七月网

函数的奇偶性(函数的奇偶性教案)

七月网2750

大家好,函数的奇偶性相信很多的网友都不是很明白,包括函数的奇偶性教案也是一样,不过没有关系,接下来就来为大家分享关于函数的奇偶性和函数的奇偶性教案的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

函数的奇偶性(函数的奇偶性教案)

什么是函数的奇偶性

证明函数的奇偶性的方法如下:

首先要看函数的定义域是否关于y轴对称,如果定义域不是关于y轴对称的,则是非奇非偶函数。如果定义域关于y轴对称了:

1.能证明该函数f(x)=f(-x),则是偶函数。

2.能证明该函数f(-x)=-f(x),则是奇函数。

3.如果不符合1和2的,则是非奇非偶函数。

函数奇偶性的定义:

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么函数xf就叫偶函数。一般地,如果对于函数xf的定义域内任意一个x,都有f(-x)=-f(x),那么函数xf就叫奇函数。

函数奇偶性的特征

定义

一般地,对于函数f(x)

⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。

⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。

⑶如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

⑷如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

定义域互为相反数,定义域必须关于原点对称

特殊的,f(x)=0既是奇函数,又是偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言。

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义。

④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。

⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如f(x)=x³【-∞,-2】或【0,+∞】(定义域不关于原点对称)

⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0

注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数

特征

概述

偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

奇函数

奇函数

定理奇函数[1]图象关于原点成中心对称图形

f(x)为奇函数<=>f(x)的图象关于原点对称,如图:

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

点(x,y)→(-x,-y)

奇函数图像关于原点对称

偶函数

偶函数

定理偶函数[2]的图象关于y轴成轴对称图形

f(x)为偶函数<=>f(x)的图象关于Y轴对称,如图

点(x,y)→(-x,y)

偶函数在某一区间上单调递减,则在它的对称区间上单调递增。

偶函数关于Y轴对称

证明方法

1、利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数

2、用求和(差)法判断:

若f(x)+f(-x)=〔f(x)-f(-x)=2f(x),则f(x)为奇函数。

若f(x)-f(-x)=〔f(x)+f(-x)=2f(x),则f(x)为偶函数。

3、用求商法判断

若f(-x)/f(x)=-1,(f(x)≠0)则f(x)为奇函数

若f(-x)/f(x)=1,(f(x)≠0)则f(x)为偶函数

性质

1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。

2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。

3、奇±奇=奇(可能为既奇又偶函数)偶±偶=偶(可能为既奇又偶函数)奇X奇=偶偶X偶=偶奇X偶=奇(两函数定义域要关于原点对称).

4、对于F(x)=f[g(x)]:若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数.

若g(x)奇函数且f(x)是奇函数,则F(x)是奇函数.

若g(x)奇函数且f(x)是偶函数,则F(x)是偶函数.

5、奇函数与偶函数的定义域必须关于原点对称.

要点诠释

[1]奇偶性是整体性质;

[2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;

[3]f(-x)=f(x)的等价形式为:f(x)-f(-x)=0,

(f(x)≠0)

f(-x)=-f(x)的等价形式为:f(x)+f(-x)=0;

(f(x)≠0)

[4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;

[5]既是奇函数,又是偶函数的函数有无数个,只要f(x)=0,且定义域关于原点对称即可

常用结论

(1)奇函数在对称的单调区间内有相同的单调性

偶函数在对称的单调区间内有相反的单调性

(2)若f(x+a)为奇函数,则f(x)的图像关于点(a,0)对称

若f(x+a)为偶函数,则f(x)的图像关于直线x=a对称

(3)在f(x),g(x)的公共定义域上:奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

奇函数×偶函数=奇函数

怎么判断函数的奇偶性

判断函数的奇偶性方法介绍如下:

1、根据奇函数和偶函数的定义进行判断

满足f(-x)=f(x),则为偶函数;满足f(-x)=-f(x),则为奇函数。

2、根据函数的图像进行判断

函数的图像关于y轴轴对称(函数的定义域一定是关于原点对称的),则为偶函数;函数的图像关于原点中心对称(函数的定义域一定是关于原点对称的),则为奇函数。

奇偶函数在对称区间上的单调性、值域特点

1、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

2、奇函数在对称区间上的值域关于原点对称,偶函数在对称区间上的值域相同。

特别的,如果一个奇函数的定义域中含有0,则必有f(0)=0。

好了,文章到此结束,希望可以帮助到大家。