高一年级数学必修一函数应用题及答案
【#高一#导语】心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!高一频道为大家推荐《高一年级数学必修一函数应用题及答案》希望对你的学习有帮助!
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设U=R,A={x|x>0},B={x|x>1},则A∩?UB=()
A{x|0≤x0,且a≠1)的反函数,且f(2)=1,则f(x)=()
A.log2xB.12x
C.log12xD.2x-2
【解析】f(x)=logax,∵f(2)=1,
∴loga2=1,∴a=2.
∴f(x)=log2x,故选A.
【答案】A
3.下列函数中,与函数y=1x有相同定义域的是()
A.f(x)=lnxB.f(x)=1x
C.f(x)=|x|D.f(x)=ex
【解析】∵y=1x的定义域为(0,+∞).故选A.
【答案】A
4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x
高一数学必修一集合试题及答案
集合的学习在高一数学课程中占据十分重要的地位,同学通过试题练习能够加强理解知识点,下面是我给大家带来的高一数学必修一集合试题,希望对你有帮助。
高一数学必修一集合试题一、选择题
1.(2013年高考四川卷)设集合A={1,2,3},集合B={-2,2},则A∩B等于(B)
(A)(B){2}
(C){-2,2}(D){-2,1,2,3}
解析:A∩B={2},故选B.
2.若全集U={-1,0,1,2},P={x∈Z|x2<2},则∁UP等于(A)
(A){2}(B){0,2}
(C){-1,2}(D){-1,0,2}
解析:依题意得集合P={-1,0,1},
故∁UP={2}.故选A.
3.已知集合A={x|x>1},则(∁RA)∩N的子集有(C)
(A)1个(B)2个(C)4个(D)8个
解析:由题意可得∁RA={x|x≤1},
所以(∁RA)∩N={0,1},其子集有4个,故选C.
4.(2013年高考全国新课标卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-
(A)A∩B=(B)A∪B=R
(C)B⊆A(D)A⊆B
解析:A={x|x>2或x<0},
∴A∪B=R,故选B.
5.已知集合M={x≥0,x∈R},N={y|y=3x2+1,x∈R},则M∩N等于(C)
(A)(B){x|x≥1}
(C){x|x>1}(D){x|x≥1或x<0}
解析:M={x|x≤0或x>1},N={y|y≥1}={x|x≥1}.
∴M∩N={x|x>1},故选C.
6.设集合A={x+=1},集合B={y-=1},则A∩B等于(C)
(A)[-2,-](B)[,2]
(C)[-2,-]∪[,2](D)[-2,2]
解析:集合A表示椭圆上的点的横坐标的取值范围
A=[-2,2],
集合B表示双曲线上的点的纵坐标的取值范围
B=(-∞,-]∪[,+∞),
所以A∩B=[-2,-]∪[,2].故选C.
二、填空题
7.(2012年高考上海卷)若集合A={x|2x+1>0},
B={x||x-1|<2},则A∩B=.
解析:A={xx>-},B={x|-1
所以A∩B={x-
答案:{x-
8.已知集合A={x<0},且2∈A,3∉A,则实数a的取值范围是.
解析:因为2∈A,所以<0,
即(2a-1)(a-2)>0,
解得a>2或a<.①
若3∈A,则<0,
即(3a-1)(a-3)>0,
解得a>3或a<,
所以3∉A时,≤a≤3,②
①②取交集得实数a的取值范围是∪(2,3].
答案:∪(2,3]
9.(2013济南3月模拟)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值组成的集合为.
解析:若a=0时,B=,满足B⊆A,
若a≠0,B=(-),
∵B⊆A,
∴-=-1或-=1,
∴a=1或a=-1.
所以a=0或a=1或a=-1组成的集合为{-1,0,1}.
答案:{-1,0,1}
10.已知集合A={x|x2+x+1=0},若A∩R=,则实数m的取值范围是.
解析:∵A∩R=,∴A=,
∴Δ=()2-4<0,∴0≤m<4.
答案:[0,4)
11.已知集合A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B={x|3
解析:A={x|x<-1或x>3},
∵A∪B=R,A∩B={x|3
∴B={x|-1≤x≤4},
即方程x2+ax+b=0的两根为x1=-1,x2=4.
∴a=-3,b=-4,
∴a+b=-7.
答案:-7
三、解答题
12.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.
(1)9∈(A∩B);
(2){9}=A∩B.
解:(1)∵9∈(A∩B),
∴2a-1=9或a2=9,
∴a=5或a=3或a=-3.
当a=5时,A={-4,9,25},B={0,-4,9};
当a=3时,a-5=1-a=-2,不满足集合元素的互异性;
当a=-3时,A={-4,-7,9},B={-8,4,9},
所以a=5或a=-3.
(2)由(1)可知,当a=5时,A∩B={-4,9},不合题意,
当a=-3时,A∩B={9}.
所以a=-3.
13.已知集合A={x|x2-2x-3≤0};B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.
解:由已知得A={x|-1≤x≤3},
B={x|m-2≤x≤m+2}.
(1)∵A∩B=[0,3],
∴
∴m=2.
(2)∁RB={x|xm+2},
∵A⊆∁RB,
∴m-2>3或m+2<-1,
即m>5或m<-3.
14.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若
(∁UA)∩B=,求m的值.
解:A={x|x=-1或x=-2},
∁UA={x|x≠-1且x≠-2}.
方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,
当-m=-1,即m=1时,B={-1},
此时(∁UA)∩B=.
当-m≠-1,即m≠1时,B={-1,-m},
∵(∁UA)∩B=,
∴-m=-2,即m=2.
所以m=1或m=2.
高一数学必修一集合知识点集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
特殊的集合
非负整数集(即自然数集)N正整数集N*或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}
强调:描述法表示集合应注意集合的代表元素
A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。
高一数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
高一数学必修一课课练答案
一、选择题
1.已知f(x)=x-1x+1,则f(2)=()
A.1B.12C.13D.14
【解析】f(2)=2-12+1=13.X
【答案】C
2.下列各组函数中,表示同一个函数的是()
A.y=x-1和y=x2-1x+1
B.y=x0和y=1
C.y=x2和y=(x+1)2
D.f(x)=x2x和g(x)=xx2
【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};
B中函数y=x0定义域{x|x≠0},而y=1定义域为R;
C中两函数的解析式不同;
D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.
【答案】D
3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()
图2-2-1
【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快.
【答案】B
4.函数f(x)=x-1x-2的定义域为()
A.[1,2)∪(2,+∞)
B.(1,+∞)
C.[1,2]
D.[1,+∞)
【解析】要使函数有意义,需
x-1≥0,x-2≠0,解得x≥1且x≠2,
所以函数的定义域是{x|x≥1且x≠2}.
【答案】A
5.函数f(x)=1x2+1(x∈R)的值域是()
A.(0,1)
B.(0,1]
C.[0,1)
D.[0,1]
【解析】由于x∈R,所以x2+1≥1,0<1x2+1≤1,
即0<y≤1.
【答案】B
二、填空题
6.集合{x|-1≤x<0或1<x≤2}用区间表示为________.
【解析】结合区间的定义知,
用区间表示为[-1,0)∪(1,2].
【答案】[-1,0)∪(1,2]
7.函数y=31-x-1的定义域为________.
【解析】要使函数有意义,自变量x须满足
x-1≥01-x-1≠0
解得:x≥1且x≠2.
∴函数的定义域为[1,2)∪(2,+∞).
【答案】[1,2)∪(2,+∞)
8.设函数f(x)=41-x,若f(a)=2,则实数a=________.
【解析】由f(a)=2,得41-a=2,解得a=-1.
【答案】-1
三、解答题
9.已知函数f(x)=x+1x,
求:(1)函数f(x)的定义域;
(2)f(4)的值.
【解】(1)由x≥0,x≠0,得x>0,所以函数f(x)的定义域为(0,+∞).
(2)f(4)=4+14=2+14=94.
10.求下列函数的定义域:
(1)y=-x2x2-3x-2;(2)y=34x+83x-2.
【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,
故所求函数的定义域为{x|x≤0,且x≠-12}.
(2)要使y=34x+83x-2有意义,
则必须3x-2>0,即x>23,
故所求函数的定义域为{x|x>23}.
11.已知f(x)=x21+x2,x∈R,
(1)计算f(a)+f(1a)的值;
(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.
【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,
所以f(a)+f(1a)=1.
(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=1221+122=15,f(3)=321+32=910,f(13)=1321+132=110,f(4)=421+42=1617,f(14)=1421+142=117,
所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+110+1617+117=72.
法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,
而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.