七月网

函数的定义 函数的定义域

七月网4740

大家好,关于函数的定义很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于函数的定义域的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

函数的定义 函数的定义域

什么是函数的定义

函数的定义

(1)传统定义:如果在某个变化过程中有两个变量x和y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么把y叫做x的函数,x叫做自变量,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。y是x

的函数,可以记作y

=f(x)(f表示对应法则)。

(2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f

:

A→B就叫做A到B的函数,记作y

=f(x),其中x

?

A

,y?B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C?

B。

注意

①由函数的近代定义可知,函数是数集间的映射。

②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。

③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。

函数的定义是什么

函数的定义:

1、函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。

2、函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域。

函数的性质

1、对称性

数轴对称:所谓数轴对称也就是说函数图像关于坐标轴X和Y轴对称。

原点对称:同样,这样的对称是指图像关于原点对称,原点两侧,距离原点相同的函数上点的坐标的坐标值互为相反数。

关于一点对称:这种类型和原点对称颇为相近,不同的是此时对称点不再仅限于原点,而是坐标轴上的任意一点。

2、周期性

函数在一部分区域内的图像是重复出现的,假设一个函数F(X)是周期函数,那么存在一个实数T,当定义域内的X都加上或者减去T的整数倍时,X所对应的Y不变,那么可以说T是该函数的周期,如果T的绝对值达到最小,则称之为最小周期。

函数的所有定义有哪些

初中学的函数有一次函数与正比例函数∶一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.正比例函数属于一次函数,但一次函数却不一定是正比例函数.正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数.正比例函数的关系式表示为:y=kx(k为比例系数)当K>0时(一三象限),K越大,图像与y轴的距离越近.函数值y随着自变量x的增大而增大.当K<0时(二四象限),k越小,图像与y轴的距离越近.自变量x的值增大时,y的值则逐渐减小.

反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数.因为y=k/x是一个分式,所以自变量X的取值范围是X≠0.而y=k/x有时也被写成xy=k或y=k·x^(-1).

二次函数∶二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数.二次函数可以表示为f(x)=ax^2+bx+c(a不为0).其图像是一条主轴平行于y轴的抛物线.

O(∩_∩)O,希望对你有帮助

END,本文到此结束,如果可以帮助到大家,还望关注本站哦!