大家好,今天小编来为大家解答有理数和无理数的区别这个问题,有理数和无理数的区别举例很多人还不知道,现在让我们一起来看看吧!
有理数和无理数的区别是什么
有理数与无理数的区别
1、两者概念不同。
有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2、两者性质不同。
有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。
无理数的性质是由整数的比率或分数构成的数字。
3、两者范围不同。
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。
而无理数是指实数范围内,不能表示成两个整数之比的数。
什么叫做有理数和无理数
有理数:通常我们把能够写成分数形式称为有理数。有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数的小数部分是有限或为无限循环的数。0也是有理数,整数和分数统称有理数,整数也可看做是分母为一的分数。比如4=4.0,4/5=0.8,。
无理数:不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。如圆周率、√2(根号2),1/3=0.33333……
扩展资料:实数(realmunber)分为有理数和无理数(irrationalnumber)。
有理数分为整数和分数
整数又分为正整数、负整数和0
分数又分为正分数、负分数
正整数和0又被称为自然数
参考资料:百度百科——有理数
无理数和有理数的区别
1、性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。
2、特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。
3、表达方式不同:能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
扩展资料:
注意事项:
运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉。
应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便。
若分数、小数混在一块运算时,可以统一成分数或小数再运算。
如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算。
参考资料来源:百度百科-无理数
参考资料来源:百度百科-有理数
OK,关于有理数和无理数的区别和有理数和无理数的区别举例的内容到此结束了,希望对大家有所帮助。