七月网

菱形的性质与判定,矩形的性质与判定

七月网5070

大家好,关于菱形的性质与判定很多朋友都还不太明白,今天小编就来为大家分享关于矩形的性质与判定的知识,希望对各位有所帮助!

菱形的性质与判定,矩形的性质与判定

菱形的性质和判定

菱形的性质:1:对边相等且平行;

2:对角线互相垂直且平分;

3:对角相等;

4:对角线平分一组对角;

5:邻角互补;

6:邻边相等。

菱形的判定:1:邻边相等的平行四边形;

2:对角线互相垂直的平行四边形;

3:一条对角线平分一组对角的平行四边形。

菱形的判定及其性质

性质:

1、菱形具有平行四边形的一切性质;

2、菱形的四条边都相等;

3、菱形的对角线互相垂直平分且平分每一组对角;

4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;

5、菱形是中心对称图形。

判定:

1、一组邻边相等的平行四边形是菱形;

2、对角线互相垂直的平行四边形是菱形;

3、四条边均相等的四边形是菱形;

4、对角线互相垂直平分的四边形;

5、两条对角线分别平分每组对角的四边形;

6、有一对角线平分一个内角的平行四边形。

在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。

扩展资料:

菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。

设一个菱形的面积为S,边长为a,高为b,两对角线分别为c和d,一个最小的内角为∠θ,则有:

1、S=ab(菱形和其他平行四边形的面积等于底乘以高);

2、S=cd÷2(菱形和其他对角线互相垂直的四边形的面积等于两对角线乘积的一半);

3、S=a^2·sinθ。

依次连接四边形各边中点所得的四边形称为中点四边形。

不管原四边形的形状怎样,中点四边形的形状总是平行四边形。菱形的中点四边形总是矩形。(对角线垂直的四边形的中点四边形均为矩形)

参考资料来源:百度百科——菱形

菱形的性质与判定是什么

一、菱形的性质

1、对角线互相垂直且平分。

2、四条边都相等。

3、对角相等,邻角互补。

4、每条对角线平分一组对角。

5、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形。

6、在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。

7、菱形具备平行四边形的一切性质。

二、判定

1、一组邻边相等的平行四边形是菱形。

2、四边相等的四边形是菱形。

3、两条对角线都成轴对称的四边形是菱形。

4、对角线互相垂直且平分的四边形是菱形。

扩展资料:

菱形的面积:S=(a^2)×sinθ

公式说明:a为边长,θ为小于90°的夹角

应用实例:设菱形的边长a为4,其中一个夹角为30°,则它的邻角为150°,面积S=a^2sinθ=4^2xsin30°=8

OK,关于菱形的性质与判定和矩形的性质与判定的内容到此结束了,希望对大家有所帮助。