本篇文章给大家谈谈三角形的内角和,以及三角形的内角和外角对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。
三角形的内角和是多少度
三角形的内角和是180度。
用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°
在欧式几何中,∀△ABC,∠A+∠B+∠C=180°。
跟平面上的平移对称性有关,在欧式几何中,任意一个角连同它两边的直线一起平移,直线平行的情况下角就是相等的。
等价于两直线平行同位角相等,等价于欧氏几何第五公设(一个更常见的版本是:过直线外一点有且只有一条直线与已知直线平行)
因为平移不改变角的大小,那么可以把三个内角都移到一起,一个是原始角,一个是同位角,一个是内错角,刚好就是180°了。
扩展资料
一、多边形内角和
1、三角形:180°=180°·(3-2),
2、四边形:360°=180°·(4-2),
3、五边形:540°=180°·(5-2),
4、n边形:180°·(n-2)
二、多边形的外角
任意n边形外角和都是360度,对于二维平面上封闭曲线形成的图形,曲线一定是绕了360度回到起点,因此,二维平面上凸多边形的外角和永远是360度。
参考资料来源:百度百科-三角形内角和定理
三角形的内角和是多少
三角形的内角和等于180°
三角形内角和定理:三角形的内角和等于180°。
三角形内角和定理证明方法一:
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=180°。
证明:过点C作CD∥BA,则∠1=∠A。
∵CD∥BA,∴∠1+∠ACB+∠B=180°,∴∠A+∠ACB+∠B=180°
三角形内角和定理证明方法二:
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=180°。
证明:作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,∠2=∠B。
又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°。
三角形内角和定理证明方法三:
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=180°。
证明:过点C作DE∥AB,则∠1=∠B,∠2=∠A。
又∵∠1+∠ACB+∠2=180°,∴∠A+∠ACB+∠B=180°。
三角形内角和定理证明方法四:
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=180°。
证明:作BC的延长线CD,在△ABC的外部以CA为一边,CE为另一边画∠1=∠A,于是CE∥BA,∴∠B=∠2,又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°。
三角形内角和定理证明方法五:
已知:△ABC的三个内角是∠A,∠B,∠C.求证:∠A+∠B+∠C=180°。
证明:在BC上任取一点D,作DE∥BA交AC于E,DF∥CA交AB于F,则有∠2=∠B,∠3=∠C,∠1=∠4,∠4=∠A。
∴∠1=∠A,又∵∠1+∠2+∠3=180°,∴∠A+∠B+∠C=180°。
三角形内角和是什么
三角形的内角和是180度。
用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°
在欧式几何中,∀△ABC,∠A+∠B+∠C=180°。
跟平面上的平移对称性有关,在欧式几何中,任意一个角连同它两边的直线一起平移,直线平行的情况下角就是相等的。
等价于两直线平行同位角相等,等价于欧氏几何第五公设(一个更常见的本是:过直线外一点有且只有一条直线与已知直线平行)
扩展资料:
1、三角形外角和是360°。
2、三角形有6个外角。外角的个数等于多边形边数的两倍。
3、三角形的一条边与另一条边的延长线组成的角,叫做三角形的外角。外角的个数等于多边形边数的两倍。
4、三角形的一个外角等于与它不相邻的两个内角的和。
5、三角形的一个外角大于与它不相邻的任一内角。
6、定理:三角形的一个外角等于不相邻的两个内角和。
OK,本文到此结束,希望对大家有所帮助。