学习人工智能主要学什么内容
1.基础数学知识:线性代数、概率论、统计学、图论;
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;
3.编程语言基础:C/C++、Python、Java;
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;
5.工具基础知识:opencv、matlab、caffe等。
我们知道,目前国家也相继出台了一些扶持人工智能发展的政策,人工智能正处于发展的红利期,所以越早学习就越有就业优势。人工智能火起来就是这一两年的事儿,因此不管是上市企业,还是一些中小型企业,对于人工智能人才的需求量都非常大。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。目前来看,现在学习人工智能是一个很好的时机!
自学人工智能需要学那些专业知识
人工智能是一个综合学科,如楼上所说。而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++MATLAB应该多学习点。对于你想买什么书学习。我只能对我看过的书给你介绍一下,你再自己酌量一下。
人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了~第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。
机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。
机器人方面:新版《机器人技术手册》日译的书,可能这是我当初在当当网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。
我本身其实也是自己研究。如果有说的不全面的地方请见谅。
学人工智能要学些什么
、数学基础。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。这一模块覆盖了人工智能必备的数学基础知识,包括线性代数、概率论、最优化方法等。
2、机器学习。机器学习的作用是从数据中习得学习算法,进而解决实际的应用问题,是人工智能的核心内容之一。这一模块覆盖了机器学习中的主要方法,包括线性回归、决策树、支持向量机、聚类等。
3、人工神经网络。作为机器学习的一个分支,神经网络将认知科学引入机器学习中,以模拟生物神经系统对真实世界的交互反应,并取得了良好的效果。这一模块覆盖了神经网络中的基本概念,包括多层神经网络、前馈与反向传播、自组织神经网络等。
4、深度学习。简而言之,深度学习就是包含多个中间层的神经网络,数据爆炸和计算力飙升推动了深度学习的崛起。这一模块覆盖了深度学习的概念与实现,包括深度前馈网络、深度学习中的正则化、自编码器等。
5、神经网络实例。在深度学习框架下,一些神经网络已经被用于各种应用场景,并取得了不俗的效果。这一模块覆盖了几种神经网络实例,包括深度信念网络、卷积神经网络、循环神经网络等。
6、深度学习之外的人工智能。深度学习既有优点也有局限,其他方向的人工智能研究正是有益的补充。这一模块覆盖了与深度学习无关的典型学习方法,包括概率图模型、集群智能、迁移学习、知识图谱等。
7、应用场景。除了代替人类执行重复性的劳动,在诸多实际问题的处理中,人工智能也提供了有意义的尝试。这一模块覆盖了人工智能技术在几类实际任务中的应用,包括计算机视觉、语音处理、对话系统等。