什么叫量子态隐形传输技术
存放着机密文件的保险箱被放入一个特殊装置之后,可以突然消失,并且同一瞬间出现在相距遥远的另一个特定装置中,被人方便地取出。记者从中国科学技术大学获悉,日前,由中国科大和清华大学组成的联合小组在量子态隐形传输技术上取得的新突破,可能使这种以往只能出现在科幻电影中的“超时空穿越”神奇场景变为现实。
据联合小组研究成员彭承志教授介绍,作为未来量子通信网络的核心要素,量子态隐形传输是一种全新的通信方式,它传输的不再是经典信息,而是量子态携带的量子信息。
“在经典状态下,一个个独立的光子各自携带信息,通过发送和接收装置进行信息传递。但是在量子状态下,两个纠缠的光子互为一组,互相关联,并且可以在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。量子态隐形传输利用的就是量子的这种特性,我们首先把一对携带着信息的纠缠的光子进行拆分,将其中一个光子发送到特定位置,这时,两地之间只需要知道其中一个光子的即时状态,就能准确推测另外一个光子的状态,从而实现类似"超时空穿越"的通信方式。”彭承志说。
据介绍,量子态隐形传输一直是学术界和公众的关注焦点。1997年,奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证。2004年,该小组利用多瑙河底的光纤信道,成功地将量子“超时空穿越”距离提高到600米。但由于光纤信道中的损耗和环境的干扰,量子态隐形传输的距离难以大幅度提高。
2004年,中国科大潘建伟、彭承志等研究人员开始探索在自由空间实现更远距离的量子通信。在自由空间,环境对光量子态的干扰效应极小,而光子一旦穿透大气层进入外层空间,其损耗更是接近于零,这使得自由空间信道比光纤信道在远距离传输方面更具优势。
据悉,该小组早在2005年就在合肥创造了13公里的自由空间双向量子纠缠“拆分”、发送的世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。2007年开始,中国科大——清华大学联合研究小组在北京架设了长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性,为未来基于卫星中继的全球化量子通信网奠定了可靠基础。
量子纠缠与量子隐形传输、量子叠加态有什么关系
量子纠缠是量子隐形传输、量子叠加态的基础。
量子纠缠是关于量子力学理论最著名的预测。它描述了两个粒子互相纠缠,即使相距遥远距离,一个粒子的行为将会影响另一个的状态。当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。
而量子叠加态,简单来讲,就是一个事物你再观察它之前它即是a也是b可同时处于这两种状态,一旦你观察了它就只能是a或b只能是一种状态了,举个列子一枚硬币抛向天空落下来之后立刻用手盖住,此时硬币既可以是正面朝上也可以是背面朝上,但如果你一旦拿开手看到了,它就只能是一种状态了。
量子的这两种特性听起来是不是很特别又很神奇,其实道理并不难,就是因为整个宇宙都是一团能量量子纠缠中的a点和b点都处在这个能量团中而且a和b本身也是这团能量的一部分,他们之间本来就是密切相关的所以阿a的状态改变会影响b的状态而且是瞬间的。
量子隐形传态(Quantumteleportation)可以把一个原子或光子的量子态由一个地点传送到另一个地点。具体做法是假设有ABC三个粒子,刚开始的时候AB两个粒子的量子态互相纠缠在一起,其中B粒子远离A粒子向远处运动,然后我们使A粒子和另一个粒子C纠缠在一起,可以证明此时B粒子的量子态携带了C粒子初始时候携带的量子比特的信息,只要我们知道AC纠缠态的类型,我们就可以通过一个幺正变换把C粒子初始时候所处的量子态复制到B粒子上。
量子隐形传输的原理
不是,
量子隐形传输,是将原粒子物理特性的信息发向远处的另一个粒子,该粒子在接收到这些信息后,会成为原粒子的复制品。而在此过程中,传输的是原粒子的量子态,而不是原粒子本身。传输结束后,原粒子已经不具备原来的量子态,而有了新的量子态。
简单的说就是,在利用高能量另一处复制一个