七月网

热力学第一第二定律,热力学第一定律和第二定律

七月网3610

热力学第一定律和第二定律的内容

热力学第一定律基本内容是,热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。热力学第一定律是能量守恒原理的一种表达方式。热力学第二定律,又称“熵增定律”,表明了在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

热力学第一第二定律,热力学第一定律和第二定律

热力学第一定律和第二定律是科学界公认的宇宙普遍规律。能量守恒定律是说,能量可以由一种形式变为另一种形式,但其总量既不能增加也不会减少,是恒定的。二十世纪初爱因斯坦发现能量和质量可以互变后,此定律改为能质守恒定律。这个定律应用到热力学上,就是热力学第一定律。

热力学第二定律是描述热量的传递方向的:分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展。熵是一种不能转化为功的热能。

而熵的改变量等于热量的改变量除以绝对温度,高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高。物体有秩序时,熵值低;物体无序时,熵值便增高。现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加。

热力学第一定律和第二定律的内容是什么

热力学第一定律(thefirstlawofthermodynamics)是涉及热现象领域内的能量守恒和转化定律,反映了不同形式的能量在传递与转换过程中守恒。

表述为:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。即热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。其推广和本质就是著名的能量守恒定律。

热力学第二定律(secondlawofthermodynamics),热力学基本定律之一,克劳修斯表述为:

热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

表述形式:

热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。

在工程热力学范围内,热力学第一定律可表述为:热能和机械能在转移或转换时,能量的总量必定守恒。

第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用状态函数熵来描述这个差异

以上内容参考百度百科-热力学第一定律

百度百科-热力学第二定律

热力学第一定律和第二定律

热力学有三大基本定律,在地球化学研究中应用得较多的是热力学第一定律和热力学第二定律。

热力学第一定律的数学表达式是:

地球化学

式中:Q为由系统和环境间的温度差引起的能量交换形式;ΔU为系统内能的改变值;A为系统与环境交换的功,热力学中的功包括体积功和非体积功(如表面功和电功)。从式(4.1)中可以看出,体系从外界交换获得的热能除了消耗于体系与外界交换能量时所做的功外,全部转化为内能。热力学第一定律的实质是:能量不论是从一个物体传给另一个物体,或者从一种形式转化成另一种形式,其总量不变,这就是能量守恒(和能量转化)定律。

热力学第二定律的数学表达式是:

地球化学

式中:η为有效工作系数;Q1为高温热源提供的全部热量值;Q1-Q2为热量交换过程能转化成功的热量值;T1、T2分别为高温物体和低温物体的初始绝对温度值。热力学第二定律的实质是:在热-功能量的转化中,功能全部转换成热,而热不能全部转换成功。在地球化学研究领域中,热力学第二定律及其派生的各类热力学参数计算式被广泛应用。