什么是循环小数,举几个例子
一个小数的小数部分,一个或几个数字依次不断,重复出现,这样的小数叫做循环小数。比如:0.3333……。
一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数(circulatingdecimal)。循环小数会有循环节(循环点),并且可以化为分数。
两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。
从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。
循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。例如:
2.966666...缩写为
或
(读作“二点九六,六循环”)
35.232323…缩写为
或
(它读作“三十五点二三,二三循环”)
36.568568……缩写为
或
(它读作“三十六点五六八,五六八循环”)
循环小数可以利用等比数列求和公式的方法化为分数,所以循环小数均属于有理数。
循环小数包括什么
循环小数分为两种:
1、纯循环小数:自小数点后的十分位开始循环,比如:0.3333333……就是纯循环小数。
2、混循环小数:自小数点后十分位不开始循环,后面才开始循环,比如:0.322222222222……就是混循环小数。
扩展资料:
1、将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同。
例如:0.111...=1/9、0.12341234...=1234/9999。
2、将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。
例如:0.1234234234…=(1234-1)/99900.55889888988898...=(558898-55)/999900。
参考资料来源:百度百科-循环小数
循环小数是什么,循环节是什么
一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数(circulatingdecimal)。循环小数会有循环节(循环点),并且可以化为分数。
如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
扩展资料:
两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。
从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。
循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。例如:
2.966666...缩写为2.96(6上加一个点)(读作“二点九六,六循环”),6就是循环节;
35.232323…缩写为35.23(23上面各加一个点)(它读作“三十五点二三,二三循环”),23就是循环节;
36.568568……缩写为36.568(568上面各加一个点)(它读作“三十六点五六八,五六八循环”),568就是循环节;
循环小数可以利用等比数列求和公式的方法化为分数,所以循环小数均属于有理数。
小数化分数分成两类:
1、纯循环小数化分数,循环节做分子;
连写几个九作分母,循环节有几位写几个九。例:0.3(3循环)=3/9(循环节的位数有一个,所以写一个9);
0.347(347循环)=347/999(3位循环节写3个9);
2、混循环小数化分数,小数部分减去不循环的数字作分子;
连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。例如,0.2134(34循环)=(2134-21)/9900。
参考资料来源:百度百科-循环小数
参考资料来源:百度百科-循环节